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1 Summary 
This contract concerns the development of semantic web infrastructure and tools through 
the DARPA Agent Markup Language (DAML) program.  The contract to Olin College 
was initiated in March of 2001.  However, Dr. Stein (the PI) began involvement with the 
DAML program through a separate (earlier) contract with MIT and this report includes 
that work as it is integrally related to the effort under this contract. 
 
Efforts under this contract fall into five distinct categories: 
 

1. Language development.  Stein was original co-author of the language documents 
that eventually became the current World Wide Web Consortium (W3C) 
Recommendation for a semantic web language, OWL; her work on this aspect 
continued throughout this contract. 

 
2. Semantic web services and an agent-based view of the web.  This group worked 

extensively with members of the DAML-S (DAML services) team to develop an 
agent-based understanding of semantic web services.  The results – described in 
joint publications – led to a re-envisioning of web services as active participants 
in a dynamic environment, informing further development of web services 
infrastructure. 

 
3. Document lifecycle tools.  Olin College developed a set of semantic web based 

tools for collaborative document authoring and document lifecycle management.  
These tools were deployed at Olin College and on the DAML website at 
daml.org. 

 
4. Semantic web maturity assessment.  During the contract period but most 

specifically in the summer of 2003, this group evaluated the suitability of existing 
DAML and semantic web tools for application construction, including a maturity 
assessment that fed into the DAML program decision to focus on producing a 
mature tool suite. 

 
5. Meaning on the semantic web.  The semantic web is a marriage between 

knowledge representation and massively distributed infrastructure.  Traditional 
approaches to meaning (drawn from philosophy and artificial intelligence) need to 
be adapted to this new context.  

 
The body of this report draws on previously published work by the participants in the 
Olin College DAML effort.  In particular, several jointly published papers – listed in the 
final section of this report – are excerpted here.  These papers represent the work of the 
co-authors listed on those papers as well as the members of the Olin College DAML 
team. 
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2 Language Development 
DAML infrastructure involved the adaptation of a substantial body of work in knowledge 
representation to the dynamic needs of a scalable, distributed infrastructure as represented 
by both the World Wide Web and DOD’s own networks.  Olin College’s DAML team 
worked closely with the leadership of the World Wide Web Consortium to bridge the gap 
between these two fields, co-authoring the original DAML-O specification on which 
DAML+OIL and subsequently W3C’s OWL semantic web language were built. 
 

2.1 History of Olin Participation 
The Olin College PI, Lynn Andrea Stein, has been involved in various aspects of the 
DAML program on an ongoing basis since its outset (and even prior to its official 
kickoff).  Stein was a member of the MIT jump-start team that developed the initial 
straw-man document for DAML language(s), nicknamed DAML 0.5 
(http://www.w3.org/2000/07/DAML-0-5) and a participant in the DAML jump-start 
workshop of July 2000 (http://www.w3.org/2000/07/19-DAML ).  This was the role from 
which Dr. Stein initiated Olin College’s involvement with the DAML effort. 
 
At the DAML kickoff meeting in August 2000, Dr. Hendler asked Olin College – in the 
person of Dr. Stein – together with Mr. Connolly of the web consortium and Dr. 
McGuiness of Stanford/KSL, to take on editorship of the initial DAML ontology 
language, to be based on the 0.5 document together with further developments from the 
August PI meeting. 
 
The result of this process was the initial release of DAML-ONT 
(http://www.daml.org/2000/10/daml-ont.html ), the first DAML ontology language. Olin 
College was a central participant in many of the pieces of this effort and Stein was 
primary author of the walkthrough (http://www.daml.org/2000/10/daml-walkthru ). 
 
The primary role played by Olin College in these earliest phases of this project was Dr. 
Stein’s intervention as one of the only "bilingual" citizens of both the web and 
AI/KR/logic communities.  In this capacity, Olin College served as a catalyst for the 
conversations that made the semantic web infrastructure built under DAML possible.  
Since the inception of this program, many individuals from both communities have 
learned to speak the language of and even to live in the world of the other participant 
community.  
 
Subsequent to the initial release of DAML-ONT, the language committee evolved into 
what is now the Joint US/EU ad hoc Agent Markup Language Committee 
(http://www.daml.org/committee/) , and Olin College – through Stein – became a 
participant in that committee.  

2.2 DAML-ONT:  An Ontology Language for the Web 
This section provides an annotated walk through an example DAML Ontology. The 
example ontology demonstrates each of the features in DAML-ONT, the initial 
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specification for DAML Ontologies. This walkthrough includes enough information to 
enable a web programmer or person versed in knowledge representation to begin 
programming on the semantic web.   
 

2.2.1 The Ontology 
<rdf:RDF 
xmlns:rdf="http://www.w3.org/1999/02/22-
rdf-syntax-ns#" 
  
xmlns:rdfs="http://www.w3.org/2000/01/rdf
-schema#" 
  
xmlns="http://www.daml.org/2000/10/daml-
ont#"> 
 
<rdf:Description about=""> 
  <versionInfo>$Id: daml-ont.daml,v 1.2 
2000/11/14 06:16:00 connolly Exp 
$</versionInfo> 
  <imports 
resource="http://www.w3.org/2000/01/rdf-
schema"/> 
</rdf:Description> 
 
<!-- Terms for building classes from 
other classes. --> 
 
<Class ID="Thing"> 
  <label>Thing</label> 
  <comment>The most general class in 
DAML.</comment> 
</Class> 
 
<Class ID="Nothing"> 
  <comment>the class with no things in 
it.</comment> 
  <complementOf resource="#Thing"/> 
</Class> 
 
<Property ID="disjointWith"> 
  <label>disjointWith</label> 
  <comment>for disjointWith(X, Y) read: X 
and Y have no members 
 in common. 
  </comment> 
  <domain resource="#Class"/> 
  <range resource="#Class"/> 
</Property> 
 
<Class ID="Disjoint"> 
  <label>Disjoint</label> 
  <subClassOf resource="#List"/> 
  <comment>for type(L, Disjoint) read: 
the classes in L are 
  pairwise disjoint. 
 
  i.e. if type(L, Disjoint), and C1 in L 
and C2 in L, then disjointWith(C1, C2). 
  </comment> 
</Class> 
 
<Property ID="unionOf"> 
  <label>unionOf</label> 
  <comment> 
    for unionOf(X, Y) read: X is the 
union of the classes in the list Y; 
    i.e. if something is in any of the 
classes in Y, it's in X, and vice versa. 
    cf OIL OR</comment> 
  <domain resource="#Class"/> 
  <range resource="#List"/> 
</Property> 
 
<Property ID="disjointUnionOf"> 
  <label>disjointUnionOf</label> 

  <domain resource="#Class"/> 
  <range resource="#List"/> 
  <comment> 
 
    for disjointUnionOf(X, Y) read: X is 
the disjoint union of the classes in 
    the list Y: (a) for any c1 and c2 in 
Y, disjointWith(c1, c2), 
    and (b) i.e. if something is in any 
of the classes in Y, it's 
    in X, and vice versa. 
 
    cf OIL disjoint-covered 
  </comment> 
</Property> 
 
<Property ID="intersectionOf"> 
  <comment> 
    for intersectionOf(X, Y) read: X is 
the intersection of the classes in the 
list Y; 
    i.e. if something is in all the 
classes in Y, then it's in X, and vice 
versa. 
cf OIL AND</comment> 
  <domain resource="#Class"/> 
  <range resource="#List"/> 
</Property> 
 
<Property ID="complementOf"> 
  <comment> 
    for complementOf(X, Y) read: X is the 
complement of Y; if something is in Y, 
    then it's not in X, and vice versa. 
cf OIL NOT</comment> 
  <domain resource="#Class"/> 
  <range resource="#Class"/> 
</Property> 
 
<!-- List terminology. --> 
 
<Class ID="List"> 
  <subClassOf 
resource="http://www.w3.org/1999/02/22-
rdf-syntax-ns#Seq"/> 
</Class> 
 
<Property ID="oneOf"> 
  <comment>for oneOf(C, L) read 
everything in C is one of the 
     things in L; 
     This lets us define classes by 
enumerating the members. 
  </comment> 
  <domain resource="#Class"/> 
  <range resource="#List"/> 
</Property> 
 
<Class ID="Empty"> 
  <asClass resource="#Nothing"/> 
</Class> 
 
<Property ID="first"> 
  <domain resource="#List"/> 
</Property> 
 
<Property ID="rest"> 
  <domain resource="#List"/> 
  <range resource="#List"/> 
</Property> 
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<Property ID="item"> 
  <comment>for item(L, I) read: I is an 
item in L; either first(L, I) 
    or item(R, I) where rest(L, 
R).</comment> 
  <domain resource="#List"/> 
</Property> 
 
 
<!-- facets of properties. --> 
 
<Property ID="cardinality"> 
  <label>cardinality</label> 
  <comment>for cardinality(P, N) read: P 
has cardinality N; i.e. 
    everything x in the domain of P has N 
things y such that P(x, y). 
  </comment> 
  <domain resource="#Property"/> 
</Property> 
 
<Property ID="maxCardinality"> 
  <label>maxCardinality</label> 
  <comment>for maxCardinality(P, N) read: 
P has maximum cardinality N; i.e. 
    everything x in the domain of P has 
at most N things y such that P(x, y). 
  </comment> 
  <domain resource="#Property"/> 
</Property> 
 
<Property ID="minCardinality"> 
  <comment>for minCardinality(P, N) read: 
P has minimum cardinality N; i.e. 
    everything x in the domain of P has 
at least N things y such that P(x, y). 
  </comment> 
  <domain resource="#Property"/> 
</Property> 
 
<Property ID="inverseOf"> 
  <comment>for inverseOf(R, S) read: R is 
the inverse of S; i.e. 
     if R(x, y) then S(y, x) and vice 
versa.</comment> 
  <domain resource="#Property"/> 
  <range resource="#Property"/> 
</Property> 
 
<Class ID="TransitiveProperty"/> 
 
<Class ID="UniqueProperty"> 
  <label>UniqueProperty</label> 
  <comment>compare with maxCardinality=1; 
e.g. integer successor: 
 if P is a UniqueProperty, then 
 if P(x, y) and P(x, z) then y=z. 
 aka functional. 
  </comment> 
  <subClassOf resource="#Property"/> 
</Class> 
 
<Class ID="UnambiguousProperty"> 
  <label 
xml:lang="en">UnambiguousProperty</label> 
  <comment>if P is an 
UnambiguousProperty, then 
 if P(x, y) and P(z, y) then x=z. 
 aka injective. 
 e.g. if nameOfMonth(m, "Feb") 
 and nameOfMonth(n, "Feb") then m 
and n are the same month. 
  </comment> 
  <subClassOf resource="#Property"/> 
</Class> 
 
 
<!-- Terms for restricting properties of 
things in classes. --> 
 

<Class ID="Restriction"/> 
 
<Property ID="restrictedBy"> 
  <label>restrictedBy</label> 
  <comment>for restrictedBy(C, R), read: 
C is restricted by R; i.e. the 
 restriction R applies to c; 
 
        if onProperty(R, P) and 
toValue(R, V) 
        then for every i in C, we have 
P(i, V). 
 
        if onProperty(R, P) and 
toClass(R, C2) 
        then for every i in C and for all 
j, if P(i, j) then type(j, C2). 
  </comment> 
  <domain resource="#Class"/> 
  <range resource="#Restriction"/> 
</Property> 
 
<Property ID="onProperty"> 
  <comment>for onProperty(R, P), read: 
   R is a restriction/qualification on 
P.</comment> 
  <domain resource="#Restriction"/> 
  <domain resource="#Qualification"/> 
  <range resource="#Property"/> 
</Property> 
 
<Property ID="toValue"> 
  <comment>for toValue(R, V), read: R is 
a restriction to V.</comment> 
  <domain resource="#Restriction"/> 
  <range resource="#Class"/> 
</Property> 
 
<Property ID="toClass"> 
  <comment>for toClass(R, C), read: R is 
a restriction to C.</comment> 
  <domain resource="#Restriction"/> 
  <range resource="#Class"/> 
</Property> 
 
<Class ID="Qualification"/> 
 
<Property ID="qualifiedBy"> 
  <label>qualifiedBy</label> 
  <comment>for qualifiedBy(C, Q), read: C 
is qualified by Q; i.e. the 
 qualification Q applies to C; 
 
        if onProperty(Q, P) and 
hasValue(Q, C2) 
        then for every i in C, there is 
some V 
 so that type(V, C2) and P(i, V). 
  </comment> 
  <domain resource="#Class"/> 
  <range resource="#Qualification"/> 
</Property> 
 
<Property ID="hasValue"> 
  <label>hasValue</label> 
  <comment>for hasValue(Q, C), read: Q is 
a hasValue 
   qualification to C.</comment> 
  <domain resource="#Qualification"/> 
  <range resource="#Class"/> 
</Property> 
 
 
<!-- A class for ontologies themselves... 
--> 
 
<Class ID="Ontology"> 
  <label>Ontology</label> 
  <comment>An Ontology is a document that 
describes 

  4



  

 a vocabulary of terms for 
communication between 
 (human and) automated agents. 
  </comment> 
</Class> 
 
<Property ID="versionInfo"> 
  <label>versionInfo</label> 
  <comment>generally, a string giving 
information about this 
 version; e.g. RCS/CVS keywords 
  </comment> 
</Property> 
 
<!-- Importing, i.e. assertion by 
reference --> 
 
<Property ID="imports"> 
  <label>imports</label> 
  <comment>for imports(X, Y) read: X 
imports Y; 
 i.e. X asserts the* contents of Y 
by reference; 
 i.e. if imports(X, Y) and you 
believe X and Y says something, 
 then you should believe it. 
 
 Note: "the contents" is, in the 
general case, 
 an il-formed definite 
description. Different 
 interactions with a resource may 
expose contents 
 that vary with time, data format, 
preferred language, 
 requestor credentials, etc. So 
for "the contents", 
 read "any contents". 
  </comment> 
</Property> 
 
<!-- Renaming --> 
 
<Property ID="equivalentTo"> <!-- equals? 
equiv? renames? --> 
  <comment>for equivalentTo(X, Y), read X 
is an equivalent term to Y. 
  </comment> 
 
</Property> 
 
<Property ID="sameClassAs"> 
 <!--@@RDFS specs prohibits 
cycles, but I don't buy it. --> 
  <subPropertyOf 
resource="#equivalentTo"/> 
  <subPropertyOf resource="#subClassOf"/> 
</Property> 
 
<Property ID="samePropertyAs"> 
 <!--@@RDFS specs prohibits 
cycles, but I don't buy it. --> 
  <subPropertyOf 
resource="#equivalentTo"/> 
  <subPropertyOf 
resource="#subPropertyOf"/> 
</Property> 
 
<!-- Importing terms from RDF/RDFS --> 
 
<!-- first, assert the contents of the 
RDF schema by reference --> 
<Ontology about=""> 
  <imports 
resource="http://www.w3.org/2000/01/rdf-
schema"/> 
</Ontology> 
 
 
<Property ID="subPropertyOf"> 

  <samePropertyAs  
resource="http://www.w3.org/2000/01/rdf-
schema#subPropertyOf"/> 
  <subPropertyOf 
resource="http://www.w3.org/2000/01/rdf-
schema#subPropertyOf"/> 
  <!-- the subPropertyOf is for the 
benefit of agents that know RDFS 
       but don't know DAML. --> 
</Property> 
 
<Class ID="Class"> 
  <sameClassAs 
resource="http://www.w3.org/2000/01/rdf-
schema#Class"/> 
</Class> 
 
<Class ID="Literal"> 
  <sameClassAs 
resource="http://www.w3.org/2000/01/rdf-
schema#Literal"/> 
</Class> 
 
<Class ID="Property"> 
  <sameClassAs 
resource="http://www.w3.org/1999/02/22-
rdf-syntax-ns#Property"/> 
</Class> 
 
<Property ID="type"> 
  <samePropertyAs 
resource="http://www.w3.org/1999/02/22-
rdf-syntax-ns#type"/> 
</Property> 
 
<Property ID="value"> 
  <samePropertyAs 
resource="http://www.w3.org/1999/02/22-
rdf-syntax-ns#value"/> 
</Property> 
 
<Property ID="subClassOf"> 
  <samePropertyAs 
resource="http://www.w3.org/2000/01/rdf-
schema#subClassOf"/> 
</Property> 
 
<Property ID="domain"> 
  <samePropertyAs 
resource="http://www.w3.org/2000/01/rdf-
schema#domain"/> 
</Property> 
 
<Property ID="range"> 
  <samePropertyAs 
resource="http://www.w3.org/2000/01/rdf-
schema#range"/> 
</Property> 
 
<Property ID="label"> 
  <samePropertyAs 
resource="http://www.w3.org/2000/01/rdf-
schema#label"/> 
</Property> 
 
<Property ID="comment"> 
  <samePropertyAs 
resource="http://www.w3.org/2000/01/rdf-
schema#comment"/> 
</Property> 
 
<Property ID="seeAlso"> 
  <samePropertyAs 
resource="http://www.w3.org/2000/01/rdf-
schema#seeAlso"/> 
</Property> 
 
<Property ID="isDefinedBy"> 
  <samePropertyAs 
resource="http://www.w3.org/2000/01/rdf-
schema#isDefinedBy"/> 
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  <subPropertyOf resource="#seeAlso"/> 
</Property> 
 
<Property ID="default"> 
  <label>default</label> 
  <comment>default(X, Y) suggests that Y 
be considered a/the default 
 value for the X property. This 
can be considered 
 documentation (ala label, 
comment) but we don't specify 
 any logical impact. 
  </comment> 
</Property> 
 
<!-- from RDF, left out: 
 Bag, Alt: why bother? note that 
we can't import 
  the syntax of these into 
the DAML namespace if we expect 
  RDF 1.0 parsers to grok. 
 predicate, subject, object, 
Statement: DAML audience doesn't need 
quoting. 

--> 
 
<!-- from RDFS, left out 
 Container: the motivation for 
this, to somehow denote that other 
  element names can be used 
with the <li> syntax, is busted. 
 ContainerMembershipProperty: 
without the <li> syntax, not much use for 
this. 
 ConstraintResource, 
ConstraintProperty: I don't grok these. 
 --> 
 
 
</rdf:RDF> 

 

2.2.2 A minimalist survival guide to Resource Description Framework 
(RDF)  

This section is intended for those unfamiliar with RDF. It contains only enough 
information to enable you to read the annotated DAML markup example, and is not 
intended as a complete introduction to RDF, XML, or any other of the technologies on 
which DAML is based [Lassila and Swick, 1999; XML, 1998] 
 
RDF is built on XML, which makes use of tags to structure information. Here are some 
example tags:  
<aTag>...</aTag> 
 
<anEmptyTag/> 
 
<anotherTag with="an attribute">...</anotherTag> 
 
<aTag>with <anotherTag/> inside it</aTag> 
 
<tags>and<moreTags>and<moreTags>and...</moreTags></more
Tags></tags>  
 
The first thing after the open angle bracket is the tag name . The whole tag is often 
referred to by this name. So  
<Class ID="Animal">  
is a Class tag.  
 
A tag ends with a closing angle bracket.  
 
Some tags are start tags , and have matching end tags . The end tag has the same tag 
name as the opening tag, but begins with </ rather than simply <. For example,  
<Class ID="Animal">  
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would be closed by the matching end tag  
</Class>  
 
From an opening tag to its matching closing tag is an element . Other tags can be 
embedded inside the element, but all such embedded elements must be closed inside the 
enclosing element. So <rdf:RDF> would begin an element that runs until an 
</rdf:RDF> . In this case, anything between the <rdf:RDF> and the matching 
</rdf:RDF> would be enclosed in the scope of this element.  
 
An alternate way to specify an element that has nothing between its opening and its 
closing is to use a single tag with a slash immediately before the closing angle-bracket. 
Thus, the self-closing tag  
<Class ID="Animal"/>  
is the same as  
<Class ID="Animal"></Class>  
with nothing inside it.  
 
An opening tag (or a self-closing tag) may contain things other than the tag name. These 
things after the tag name are attributes . Each attribute has a name, an equal sign, and an 
attribute value (generally enclosed in double quotes). So, for example, in the Class tag 
above,  
ID="Animal"  
is the attribute,  
ID  
is the attribute name, and  
"Animal"  
is the attribute value. Attributes are read as properties of the element in which they 
appear.  
 
An RDF document is a collection of assertions in subject verb object (SVO ) form. 
Within the obligatory RDF declaration (typically a tag that begins something like 
<rdf:RDF ...), each topmost element is the subject of a sentence. The next level of 
enclosed elements represent verb/object pairs for this sentence:  
<Class ID="Male"> 
  <subClassOf resource="#Animal"/> 
</Class>  
 
Male is a subclass of Animal.  
<Class ID="Female"> 
  <subClassOf resource="#Animal"/> 
  <disjointFrom resource="#Male"/> 
</Class>  
 
Female is a subclass of Animal AND Female is disjoint from Male. The single subject -- 
Female -- is used to begin each of the verb-object assertions  
<subClassOf resource="#Animal"/>  
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and  
<disjointFrom resource="#Male"/>  
 
A few attributes here require explanation.  
 
ID creates a referenceable name, corresponding to the attribute value. So, for example, 
ID="Male" means that you can refer to Male and mean the thing described by the Class 
element above. Similarly, Female is a referenceable name.  
 
The resource attribute , then, is simply a reference to such a name. In  
<disjointFrom resource="#Male"/>  
the resource attribute is used to indicate that the object of the assertion "Female is disjoint 
from" is the thing identified with the name Male. Note the prepended # to refer to the 
name. This indicates a reference to a name within the same containing document, i.e., a 
local name . It is also possible (e.g., by prepending a url before the #) to refer to a name 
defined elsewhere.  
 
In the above example, each verb tag is self-closing. It is also possible to embed elements 
inside these verb elements, making objects that are themselves the subjects of subordinate 
clauses. This causes an alternation of subject verb subject verb ... sometimes called RDF 
striped syntax . 

2.2.3 Setting Up Namespaces  
DAML-ONT, as of this draft, is written in RDF, i.e., DAML-ONT markup is a specific 
kind of RDF markup. RDF, in turn, is written in XML, using XML Namespaces and 
URIs [Lassila and Swick, 1999; XML, 1998; XML Namespaces, 1999; Berners-Lee et 
al., 1998]. 
 
Thus, our example begins with an RDF start tag including three namespace declarations:  
<rdf:RDF 
  xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-
ns#" 
  xmlns     ="http://www.daml.org/2000/10/daml-ont#" 
  xmlns:daml="http://www.daml.org/2000/10/daml-ont#" 
  >  
 
So in this document, the rdf: prefix should be understood as referring to things drawn 
from the namespace called http://www.w3.org/1999/02/22-rdf-
syntax-ns# . This is a conventional rdf declaration appearing verbatim at the 
beginning of almost every rdf document.1

 

                                                 
1 The namespace prefix rdf is arbitrary here; you can call the namespace associated with 
http://www.w3.org/1999/02/22-rdf-syntax-ns# whatever you want. Since this is the 
conventional namespace for rdf syntax, rdf is a common way to spell this prefix. 
See section 4.2 Same-document References of [Berners-Lee et al., 1998] . 
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The second declaration says that in this document, unprefixed element names should be 
understood as referring to things drawn from the namespace called 
http://www.daml.org/2000/10/daml-ont# . This is a conventional 
DAML-ONT declaration that should appear verbatim at the beginning of the current 
generation of DAML-ONT documents.  
 
The third declaration binds the daml: prefix to the same namespace name. So, for 
example, <Thing/> and <daml:Thing/> refer to the same thing in this 
document.2

 
If you look at the bottom of this document, you'll see the matching closing tag, 
</rdf:RDF> . 

2.2.4 Housekeeping  
The first thing we do inside this RDF is to assert that this is an ontology.  
<Ontology about="">  
 
This assertion is formulaic; the about attribute will typically be empty, indicating that the 
subject of this assertion is this document.3

 
Then we give a couple properties of this ontology for documentation purposes:  
<versionInfo>$ Id : daml-ex.daml,v 1.2 2000/10/07 
03:21:17 connolly Exp $</versionInfo> 
  <comment>An example ontology</comment>  
followed by...  
<imports resource="http://www.daml.org/2000/10/daml-
ont"/>  
 
Inside the Ontology element, we list any imported ontologies (using imports properties). 
This particular ontology depends only on the standard DAML ontology (used in the 
namespace definitions above).  
 
Note that this (imports) tag is an empty element; the same tag starts and ends the element.  
</Ontology>  

2.2.5 Defining Classes and Properties  
Now, we begin our ontology definitions. First, we define a kind of thing called an animal. 
To do this, we use a Class tag.4
<Class ID="Animal">  
 
                                                 
2 Un-prefixed attribute names are not associated with the default namespace name the 
way un-prefixed element names are.  
3 See myth #4 in Namespace Myths Exploded (Ronald Bourret Mar. 8, 2000 in 
XML.com). 
4 DAML Class is a synonym for rdfs:Class. 
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This asserts that there is a Class known as Animal. It doesn't say anything else about what 
an animal is, etc. It is also not (necessarily) the sole source of information about Animals; 
we will see below how we can add to a definition made elsewhere.  
 
However, by saying that its ID is Animal, we make it possible for others to refer to the 
definition of Animal we're giving here. (This is done using the URI of the containing 
page followed by #Animal .)  
<label>Animal</label> 
 <comment>This class of animals is illustrative of a 
number of 
 ontological idioms.</comment>  
 
These two lines introduce a label -- a brief identifier of the enclosing element, suitable for 
graphical representations of RDF, etc. -- and a comment -- a natural language (English, in 
this case) description of the element within which it is included. Neither a label nor a 
comment contributes to the logical interpretation of the DAML.  
</Class>  
 
There are two types of animals, Male and Female.  
<Class ID="Male"> 
 <subClassOf resource="#Animal"/> 
</Class>  
 
The subClassOf element asserts that its subject -- Male -- is a subclass of its object -- the 
resource identified by #Animal.5  
<Class ID="Female"> 
 <subClassOf resource="#Animal"/> 
 <disjointFrom resource="#Male"/> 
</Class>  
 
Some animals are Female, too, but nothing can be both Male and Female (in this 
ontology) because these two classes are disjoint (using the disjointFrom tag):  
 
Next, we define a property. A property -- or binary relation -- connects two items. In this 
case, we're defining the parent relation.6
<Property ID="parent">  
 
The property definition begins similarly to the Class: There is a property called parent. 
Note, however, that this is not a closing tag; there's more to this definition. (There is a 
matching </Property> tag below.)  
<cardinality>2</cardinality>  
 

                                                 
5 DAML SubClassOf is a synonym for rdfs:subClassOf.  
6 DAML Property is a synonym for rdf:Property.  
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Embedded elements, such as this one, are understood to describe their enclosing 
elements. So this cardinality element describes the Property whose ID is parent. It says 
that each thing-that-has-a-parent has two of them.  
<domain resource="#Animal"/>  
 
This element also describes the Property whose ID is parent. It says that the domain 
[Footnote: rdfs:domain] of the parent relation is Animals. That is, we're defining parent 
as a thing that an animal has.  
 
We do this by asserting that there's a thing which is a domain -- a description of what 
kinds of things you can talk about the parents of -- and saying that the domain of this 
thing (the Property with ID parent) is the resource known as #Animal. What is the 
resource attribute? It is a reference to something. (Note: ID creates a reference-able 
description; resource refers to such a description.)  
 
Each of these names -- Person, Man, and Woman -- refers to names in this document, 
since each reference begins with a #.  
</Property>  
 
That's all we have to say about this Property (whose ID = parent).  
 
Now we'll define a Class with some attributes.  
<Class ID="Person">  
 
This element describes a kind of thing called a Person, and is referenceable as such.  
<subClassOf resource="#Animal"/>  
 
A Person's a kind of Animal (see definition of Animal, above).  
 
The next few lines describe a domain-specific range restriction. To whit, the parent of a 
Person is also a Person.  
<restrictedBy> 
  <Restriction> 
   <onProperty resource="#parent"/> 
   <toClass resource="#Person"/> 
  </Restriction> 
 </restrictedBy>  
 
The syntax used here is a cliché, i.e., it is almost always used as shown, except for the 
name of the resource in the OnProperty element, which will give the name of the 
Property to be restricted, and the resource associated with the toClass element, which will 
give the name of the Class to which the Property is restricted.  
</Class>  
 
That's the end of the Person class.  
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The next several annotations illustrate features of properties:  
 
Father is a property that is a kind of parent property, i.e., x's father is also x's parent.7  In 
addition, range is used to ensure that x's father must be a Man, and that x has only one 
father.  
<Property ID="father"> 
 <subProperty resource="#parent"/> 
 <range resource="#Man"/> 
 <cardinality>1</cardinality> 
</Property>  
 
Mother is defined similarly but using a variant notation. A UniqueProperty is one with 
cardinality 1, so we can omit that sub-element from Mother's definition.  
<UniqueProperty ID="mother"> 
 <subProperty resource="#parent"/> 
 <range resource="#Woman"/> 
</UniqueProperty>  
 
See also UnambiguousProperty, a property whose object uniquely identifies its subject.  
 
Sometimes, we like to refer to mothers using the synonym mom. The tag equivalentTo 
allows us to establish this synonymy:  
<Property ID="mom"> 
 <equivalentTo resource="#mother"/> 
</Property>  
 
If x's parent is y, then y is x's child. This is defined using the inverseOf tag.  
<Property ID="child"> 
 <inverseOf resource="#parent"/> 
</Property>  
 
The ancestor and descendent properties are transitive versions of the parent and child 
properties. We would need to introduce additional elements to enforce these connections.  
<TransitiveProperty ID="ancestor"> 
</TransitiveProperty> 
 
<TransitiveProperty ID="descendant"/>  
 
The cardinality property is exact. But sometimes we want to bound cardinality without 
precisely specifying it. A person may have zero or one job, no more:  
<Property ID="occupation"> 
 <maxCardinality>1</maxCardinality> 
</Property>  
 
Classes, too, can be annotated in various ways:  

                                                 
7 This is rdfs:subProperty.  
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<Class ID="Car"> 
 <comment>no car is a person</comment> 
<subClassOf>  
 
The thing that Car is a subClassOf could in principle be specified using a resource= 
attribute. In this case, however, there is no preexisting succinct name for the thing we 
want. A car is a kind of non-person. We build this by introducing a new -- anonymous -- 
Class definition described using the complementOf tag:  
<Class> 
   <complementOf resource="#Person"/>  
 
From the inside out: There's a thing that's the complement of Person, i.e., all non-Persons.  
</Class>  
That thing is a Class.  
</subClassOf>  
That thing -- the Class of all non-Persons -- has a subClass.  
</Class>  
 
The Class with ID Car is the thing that is a subClass of the Class of all non-Persons.  
 
(There's a similar construction from the outside in: Car is a Class that is a specialization 
of another Class, the Class that's left when you consider everything except Persons).  
 
A Man is a kind of Male Person  
<Class ID="Man"> 
 <subClassOf resource="#Person"/> 
 <subClassOf resource="#Male"/> 
</Class>  
...and a Woman's a Female Person.  
<Class ID="Woman"> 
 <subClassOf resource="#Person"/> 
 <subClassOf resource="#Female"/> 
</Class>  
 
Here is an example of further specifying a previously defined element by using the about 
attribute. These assertions about the thing described above with ID Person have no more 
and no less authority than the assertions made within the <Class ID="Person"> element. 
(Of course, if the two assertions were in different documents, had different authors, etc., 
they might have different authority.)  
 
In this case, we identify the Class Person with the disjoint union of the Classes Man and 
Woman. Note that the disjointUnionOf element contains two subelements, the Class Man 
and the Class Woman. The parseType= "daml:collection" indicates that these 
subelements are to be treated as a unit, i.e., that they have special RDF-extending 
meaning within the disjointUnionOf. 
<Class about="#Person"> 
 <comment>every person is a man or a woman</comment> 
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 <disjointUnionOf parseType="daml:collection"> 
  <Class about="#Man"/> 
  <Class about="#Woman"/> 
 </disjointUnionOf> 
</Class>  
 
We can also define individuals, e.g., Adam:  
<Person ID="Adam"> 
 <label>Adam</label> 
 <comment>Adam is a person.</comment> 
</Person>  
 
A Person has a height, which is a Height. (height is a Property, or relation; Height is a 
Class, or kind of thing.)  
<Property ID="height"> 
 <domain resource="#Person"/> 
 <range resource="#Height"/> 
</Property>  
 
Height is Class described by an explicitly enumerated set. We can describe this set using 
the oneOf element. Like disjointUnionOf, oneOf uses the RDF-extending 
parsetype="daml:collection".  
<Class ID="Height"> 
 <oneOf parseType="daml:collection"> 
  <Height ID="short"/> 
  <Height ID="medium"/> 
  <Height ID="tall"/> 
 </oneOf> 
</Class>  
 
Finally, TallMan is the Class defined by intersecting TallThing and Man. The 
intersectionOf element also uses parsetype="daml:collection".  
<Class ID="TallMan"> 
 <intersectionOf parseType="daml:collection"> 
 <Class about="#TallThing"/> 
 <Class about="#Man"/> 
 </intersectionOf> 
</Class>  
 
Finally, we end the rdf:RDF element.  
</rdf:RDF>  
 

2.3 Subsequent Changes to DAML Ontology Languages 
The original DAML-ONT document continued to evolve under the guidance of the Joint 
Committee (including Olin College participation) and was subsequently reissued as 
DAML+OIL, the DAML program’s official ontology language.  This in turn was adopted 
as a starting point for the World Wide Web Consortium’s Web Ontology (WebOnt) 
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Working Group and issued as a W3C Technical Report 
(http://www.w3.org/TR/daml+oil-reference). 
 
With the establishment of the WebOnt working group at W3C, chaired by Dr. Jim 
Hendler (original PM of the DAML program), Olin College’s language efforts shifted 
towards the consolidation of the initial DAML+OIL work and its transformation into a 
viable web tool.  Dr. Stein joined the WebOnt working group as an invited expert.   The 
WebOnt working group produced its own ontology language, called OWL, based closely 
on the original DAML-ONT specification that Olin College PI Stein co-authored,  The 
OWL specification was initially released in July 2002 and finally issued as a W3C 
Recommendation in February 2004 (http://www.w3.org/TR/owl-ref/).  Upon OWL’s 
creation by the WebOnt Working Group (and per order of the DAML PM), OWL was 
adopted by the DAML program to replace its own official ontology language.  
 
The Web Ontology Language OWL is a semantic markup language for publishing and 
sharing ontologies on the World Wide Web.  OWL is developed as a vocabulary 
extension of RDF (the Resource Description Framework [RDF, 1999]) and is derived 
from the DAML+OIL Web Ontology Language, itself derived from DAML-ONT.  The 
next two subsections summarize the major changes made from the original DAML-ONT 
specification in each of these subsequent language releases. 

2.3.1 DAML+OIL Differences 
1. Redefinition of Thing (now Thing is the union of Nothing and the complement of 

Nothing). 
2. Addition of localized cardinality restriction. 
3. Elimination of restrictedBy. 
4. Elimination of qualifications (superceded by restrictions). 
5. Clarification of restriction semantics; now restrictions are necessary and 

sufficient. 
6. Elimination of cardinality facets on slots. 
7. Renaming of certain properties to increase clarity. 
8. Elimination of “default”. 

2.3.2 OWL Differences 
1. Removal of qualified number restrictions. 
2. Addition of explicitly symmetric properties. 
3. Removal of certain ambiguous constructs. 
4. Renaming of certain features to increase clarity. 
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3 Web Services and Agents 
Olin College engaged in a significant collaboration with the DAML-S (DAML Services) 
effort and produced papers bridging our prior work with theirs.  As a result of these 
efforts, we were able to provide feedback that will contribute to the development of an 
active rather than passive Semantic Web.  
 
This work takes an agent-oriented approach to building the semantic Web, in which we 
view a system as a collection of agents—human-like actors with beliefs, intentions, and 
abilities. This approach offers an intuitive way to reason about systems, which makes it 
easier to build them. Software engineers can reason about large systems using the social 
skills our species has been honing for thousands of years [Ciancarini and Wooldridge, 
2001]. 
 
Agent-oriented software engineering emphasizes that the Web is not just about 
information; it’s about services—about getting things done. The Web connects to 
companies and organizations, people and software programs. Services are a form of 
behavior, and, according to Alan Turing (the Turing test), behavior is the fundamental 
attribute of intelligence. By connecting AI agents to these services we are not just giving 
agents more information; we are giving them more behavior. We are extending their 
intelligence so that they can affect the real world. 
 
Of course, agent-oriented software engineering is far from trivial. To achieve this vision 
for the semantic Web we need two things: a methodology for building agents that can 
safely extend their own behavior, and a way to mark up the semantic Web to support this 
type of extension.  
 
To engineer extendable agents, we propose using an agent-oriented approach to software 
engineering called Behavior-Oriented Design (BOD) [Bryson and Stein, 2001a] BOD 
supplies both modularity—permitting compartmentalization—and mechanisms for 
intermodule coordination. The markup language we build on is a refinement of DAML-S 
[Ankolekar et al., 2001].  DAML-S markup on services and BOD modules lets a BOD 
agent make informed decisions about using them.  DAML-S also encodes the BOD 
reactive plans that combine, control, and arbitrate among these modules.  The resulting 
agents are the new semantic Web’s active intelligence. 

3.1 Bringing Agents to the Web 
DAML-S stems from the Defense Advanced Research Projects Agency’s (DARPA’s) 
work to produce the DARPA Agent Markup Language (DAML). DAML is itself an 
extension of the Extensible Markup Language (XML) and the Resource Description 
Framework (RDF), which aim to provide better specifications of relationships and 
ontologies within Web pages. The ultimate goal is to facilitate the automated parsing of 
Web pages and thus the intelligent use of data on the Web. DAML-S is DAML devoted 
to describing Web services. It will let users and software agents automatically discover, 
invoke, compose, and monitor Web resources that offer services, under specified 
constraints. 
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Using a formal language like DAML-S offers enormous benefits. Not only does it enable 
the precise handling of information-retrieval searches and more elaborate types of queries 
over Web content, but it also opens the door to powerful forms of reasoning about that 
content [Denker et al., 2001].  Because its designers recognized the problem of 
combining services, DAML-S already provides nearly all the infrastructure to support our 
approach. However, understanding the semantic Web as active agent intelligence does 
require some refinements to the current DAML-S specification.  
 
Any agent design methodology suitable to exploiting discovered services must both 
emphasize modularity and have some mechanism for coordinating modules. Using BOD, 
designers develop modular agents in the behavior-based tradition. To coordinate and 
arbitrate among these modules, designers build explicit, hand-coded reactive plans. These 
reactive plans encode the agents’ (possibly conflicting) goals and their priorities. For 
example, an agent may have the goal of buying a plane ticket and of retaining a positive 
balance in a bank account. Either of these goals may in theory have higher priority; 
BOD’s reactive plans let the agent’s designer specify which goal does have priority and 
in what circumstances. Meanwhile, the designer can encode the nitty-gritty of pursuing 
the goal inside a software module.  
 
The BOD agent architecture is one of a number that combine behavior-based AI and 
reactive planning [Bryson, 2000].  BOD’s agents differ from other hybrid architectures 
because BOD gives more power and autonomy to the behavior modules and reduces the 
need for plans to arbitrate among modules that vie for resources. However, our proposals 
should apply to a range of agent architectures. 

3.2 Services, Agents, and Behavior 
A Web service is any Web-accessible program or device, and it may or may not affect the 
real world. For example, a service that searches the Web for research on Haiti changes 
only the agent’s own knowledge state; a service to buy an airline ticket debits the user’s 
charge account and enters that user on the passenger list. Other examples of Web services 
are a software company providing a patch to fix a program, the police department 
sending an officer to check a house, or a post office printing an e-mail message and 
delivering it as surface mail.  
 
A composite service combines individual services in a way that adds value to the user. 
An example is a travel agency, where a customer specifies the preferred type of trip, and 
the travel agent selects or assists in selecting specific service providers, such as the airline 
and hotel. To combine the simpler services of which it is composed, a composite service 
typically has coordination or arbitration rules that let it prioritize or make tradeoffs, like 
booking an airline ticket to lock in a good rate before fully investigating hotel options.  
 
An agent is any relatively autonomous actor, typically with 

 
• goals, conditions it works to achieve or maintain; 
• intentions, goals and subgoals that it is currently pursuing, 
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• beliefs, knowledge about the world, which is necessarily limited and 
possibly inaccurate; and 
• behaviors, actions it can take. 

 
Most people view agents as consumers of services. However, in employing a service, you 
are also, in a sense, acquiring new behavior. For example, if you need to paint your 
house, you can buy a brush or hire a painter. You can use either to paint your house. 
Although you might not think of a hired painter as part of yourself, the painter helps you 
achieve your goal. Further, you must alter your own plans to monitor the painter and to 
accommodate his actions. The painter might even help you store memories: Years later, 
when you contact him for the paint brand and color, he can supply it. So, as Andy Clark 
noted in Being There: Putting Brain, Body and World Together Again (MIT Press, 
Cambridge, Mass., 1996), things outside your person may become a part of your agency. 
This is at least as true for an AI agent as it is for a human. 

3.3 Modular Agents and BOD 
Modularity simplifies software engineering because it lets designers decompose a 
complex program into relatively simple modules. A programmer or designer can then 
develop and debug these modules independently. Modularity underlies object-oriented 
design as well as the behavior-based approach to AI, which has become at least part of 
many leading agent-architecture paradigms [Bryson, 2000; Gat, 1998]. 
 
Modularity generally simplifies design, but it also creates two formidable challenges. 
One is decomposition: how many modules and what resources in each? The other is 
coordination. What if independent components attempt contradictory behavior? For 
example, what if a module dedicated to charity and a module dedicated to housekeeping 
both decide to make a major expenditure in the same month? The overall system must 
have some way to arbitrate between these modules and decide which action will execute. 
 
BOD, like object-oriented design, specifies that modules group actions that require 
shared variable state. Designers initially specify reactive plans as simple sequences of 
actions that the agent can be expected to take. BOD provides both a six-step guide for 
initial decomposition and a cyclic development process for actual implementation. The 
development process features heuristics for reevaluating which parts of the agent’s 
intelligence the designer should represent in separate behaviors and which in the reactive 
plans. Consequently, the agent’s structure stays as simple as possible while its behavioral 
complexity increases [Bryson and Stein, 2001a]. 
 
Applying BOD to semantic Web development constrains some of this development 
process. On the Web, services are the behavior modules—black boxes from the 
perspective of any client agent, either human or artificial. The agent can turn knobs and 
switches (on a travel service, for example, it can choose a date and destination) but it has 
no control over how the module actually works. Nevertheless, agents are in many 
respects just like behavior modules. They provide perceptual information (tell you the 
price or availability of a flight), perform actions (buy a ticket), and maintain state 
(remember your itinerary). 
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3.4 Module Coordination 
The most popular way to arbitrate behavior-based modular systems is to incorporate 
hierarchical reactive plans into system execution [Bryson, 2000; Gat, 1998].  Reactive 
planning addresses the problem of action selection by looking up the next action based on 
the current context, in contrast to deliberate or constructive planning, which involve 
search and means-to-ends reasoning. Reactive plans are established structures that 
support the look-up process. Hierarchical reactive plans are simple, robust plans, each 
element of which may itself be another reactive plan. 
 
BOD uses parallel-rooted, ordered slip-stack hierarchical (POSH) reactive plans [Bryson 
and Stein, 2001b].  At the root of the plan hierarchy are the agent’s top-level goals. For 
example, suppose Mojda has an agent with two jobs: notify her of meetings and search 
the Web for articles relevant to her research. The agent’s plan hierarchy would have two 
root branches; the higher priority goal (branch) would be monitoring her schedule. 
 
On every program cycle, a POSH agent’s coordination module checks to see which root 
goal it should attend to (as determined by priority, preconditions, and optional 
scheduling). It then pursues progress toward that goal, as determined by the state of 
component behaviors and the last action recorded in that branch of the POSH plan. 
 
A coordination module pursues progress toward a goal in several ways. First, a behavior 
module/Web service may be making progress independently and in parallel to the 
coordination module. In this case, the coordination module needs to determine merely 
whether the behavior module is complete. Second, achieving the goal may require the 
agent to perform actions in a set sequence. In this case, the coordination module recalls 
its current place within the sequence and triggers the next step. Finally, sometimes a goal 
requires that the agent perform actions sequentially, but the exact sequencing cannot be 
determined in advance. In this case, the designer supplies a basic reactive plan—an 
elaborated sequence that incorporates production-rule-like technology.  

3.4.1 How a Basic Reactive Plan Works 
A basic reactive plan is an elaboration of a simple sequence that allows for a reactive 
response to dynamic environments. Execution of a BRP can skip or repeat elements of 
the sequence as necessary. The final (terminating) element has the highest priority. A 
precondition guards each element, determining whether that element can execute guards 
each element. Each program cycle of the behavior-arbitration module executes the 
highest priority, currently executable element of the currently attended BRP. A BRP step 
is a tuple of priority, releaser, and action. Each BRP contains the small set of steps 
associated with achieving a particular goal condition. The releaser for a step is a 
conjunction of Boolean perceptual primitives that determines whether the step can 
execute. Each action can be either another BRP or a more primitive plan element. 
 
The releaser and priority determine the order in which plan steps are expressed. If more 
than one step is operable, the priority determines which step executes. If no step can fire, 
the BRP terminates. The top priority step of a BRP is often, though not necessarily, a 
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goal condition. In that case, its releaser recognizes that the BRP has succeeded, and its 
action terminates the BRP. 

3.5 Agent support in DAML-S 
The semantic Web is Web intelligence waiting to be discovered and incorporated by 
intelligent agents. DAML-S has two roles in realizing that vision. First, every service 
must be described in such a way that an agent can know what it provides and how to 
interact with it. Second, DAML-S provides support for composite services, combinations 
of simpler services—or behaviors—and the coordination mechanisms—or reactive 
plans—used to combine those behaviors.  

3.5.1 Composite services 
In DAML-S composite services, both behaviors and behavior arbitration are present on 
the Web. A composite service creates reliable, uniform, higher-level subgoals and 
specifies services that can partially achieve these subgoals [McIlraith and Son, 2002].  
For example, if Mojda decides she needs a vacation, a composite service lets her say, 
“Buy me the cheapest ticket from here to France.” instead of “Purchase AcmeAir Flight 
309 Date 20th November.” 
 
You can view a composite service as a conventional program, or, more essentially, as 
another, more powerful service. However, we see an advantage to thinking of a Web 
service as either an agent in itself, or even as a part of an agent—an extension any agent 
could apply to itself once it finds and chooses to adopt the service. 
 
One way an agent could interact with a composite service is if the composite service 
itself behaved as an agent. Suppose userAgent is an agent serving a user. userAgent 
might discover and enlist a number of compositeServiceAgents to provide a particular 
service. Before making a final purchase, userAgent can expect the 
compositeServiceAgents to engage in a negotiation between themselves to select the best 
offer, perhaps with the userAgent serving as an auctioneer.  
 
An even more compelling scenario is if userAgent can absorb the composite service 
directly as part of userAgent’s intelligence. Because modules and services are relatively 
autonomous in a BOD agent, this requires only that the designer append the composite 
service’s arbitration to userAgent’s reactive plan hierarchy. Thus, in Mojda’s case, the 
userAgent might be given a higher-level goal: “Get Mojda somewhere nice as soon as 
possible without overdrawing her checking account,” but be given very little plan or 
module support for how to succeed at this task. userAgent might then access the Web and 
find a composite service that can plan trips. It would then absorb the functionality of the 
composite service plan into its own ontology—its own goal and plan structure.  
 
The advantage of incorporating the composite service as part of the userAgent is that it 
gives userAgent a finer granularity of control. For example, userAgent might discover 
prices available at multiple sites and hold transactions open in each of them before 
making a decision about which to terminate and which to accept. A userAgent seeking 
the cheapest possible vacation might exploit two composite services, “Buy me the 
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cheapest ticket” and “Rent me the cheapest accommodation.” The now-augmented 
userAgent might be able to intervene in the workings of each composite service, altering 
and pruning each service’s search space in light of the information gleaned from the 
other. 
 
The advantages are even greater if userAgent’s designer can encode userAgent in the 
same formalism as the composite services. In this case, if the userAgent has the capability 
to test or reason about its own plan structures, it will be able to evaluate composite 
services in these same terms. Informed and possibly even secure choices among Web 
service structures would be possible. 

3.5.2 Describing services 
At the highest level, DAML-S aims to provide more opportunity to automate all aspects 
of Web-based service provision and use. To meet that goal, it organizes a service 
description into three conceptual areas [Ankolekar et al., 2002]: 
 
The profile describes what the service does. It characterizes the service for advertising, 
discovery, and matchmaking—the kinds of information service-seeking agents need. 
 
The process model tells how the service works, including information about the service’s 
inputs, outputs, preconditions, and effects. It is also important in composing and 
monitoring processes. 
 
The grounding tells how an agent can access a service. Typically, it specifies a 
communications protocol, such as RPC, or CORBA IDL, and provides details such as 
port numbers used in contacting the service. 
 
Once it selects a service, the agent uses its process model and grounding to build a 
message sequence for interacting with the service. The profile and process model are 
abstract specifications, in that they do not commit to any particular message format, 
protocol, or Internet address. The grounding provides the concrete specification of these 
details. 
 
Since the process model specifies the service behavior, it is the foundation of intelligent 
Web services and is of most interest to BOD. The model includes three types of 
processes: 

 
• Atomic processes are the units of invocation. From the service requester’s 
view, an atomic process executes and returns in a single step. 
• Simple processes are like atomic processes in that the requester perceives 
them as having single-step executions. Unlike atomic processes, however, the 
requester cannot invoke them directly, and they are not associated with a 
grounding. Simple processes provide abstract views of atomic or composite 
processes. 
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• Composite processes are constructed from subprocesses, which can be 
either atomic, simple, or composite. Designers use control constructs to specify 
the structure of a composite process. 
 

Control constructs are themselves composite, usually being composed of conditions and 
process components, which in turn can be either processes or control constructs. For 
example, the control construct If-Then-Else contains a condition and two subprocesses, 
one of which executes when the condition is true and the other when the condition is 
false. Table 1 lists the control constructs in the DAML-S’s process model. 

 
Table 1. Control constructs in the DAML-S process ontology. 

Construct Description 
Sequence Execute a list of processes in sequential order. 
Concurrent Execute elements of a bag of processes 

concurrently. 
Split Invoke elements of a bag of processes. 
Split + Join Invoke elements of a bag of processes and 

synchronize. 
Unordered Execute all processes in a bag in any order. 
Choice Choose between alternatives and execute. 
If-Then-Else If specified condition holds, execute “Then,” else 

execute “Else.” 
Repeat-Until Iterate execution of a bag of processes until a 

condition holds. 
Repeat-While Iterate execution of a bag of processes while a 

condition holds. 
 

3.6 Implications for DAML-S 
Viewing the semantic Web as containing intelligence rather than just knowledge provides 
a new perspective for semantic Web protocols like DAML-S. We propose a number of 
DAML-S extensions, and we believe that these insights apply to other semantic Web 
ontologies as well. We also believe that encoding both agents and services in the same 
way is the easiest and most thorough way to achieve our vision. Consequently, these 
recommendations are for supporting userAgents as well as conventional Web services. 

3.6.1 Data 
Data are key to modularity and agent design, yet they are not currently part of the 
DAML-S ontology. Some data are integral parts of an agent itself such as the agent’s 
current decision history or its progress in a search. Other data are maintained in service 
modules, such as airline ticket prices or even the userAgent’s itinerary. Data recovery 
characteristics, particularly after failures or crashes, should be a functional attribute of the 
DAML-S service profile. 
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3.6.2 Primitives 
Real-time system primitives can behave in two ways. A primitive can compute and return 
an answer, taking an arbitrarily long time to complete. Or a primitive can trigger a 
process to run, returning only success or failure in starting the process, leaving the calling 
program to check whether the process has completed and for any results.  
 
BOD currently uses a hybrid of these approaches. Technically it uses the former 
(blocked) primitive call, but it expects the module to have an answer ready immediately. 
Under BOD, behavior modules normally provide an anytime response [Dean and Boddy, 
1988].  Basic services in DAML-S should specify their expected return time and values, 
possibly guaranteeing timeouts if requested. 

3.6.3 Sequences  
A sequence’s behavior depends on the nature of its primitives. BOD’s action selection 
has two sequence types: a trigger sequence, which expects extremely rapid responses 
from all its elements and executes within a single planning cycle, and an action pattern, 
which allows for context-checking and reallocation of control priority between every 
element. Both sequence types abort if one of their elements returns a failure. 
 
DAML-S includes a sequence subtype, but it does not determine whether sequences can 
be interrupted. Also, in DAML-S, sequence elements themselves can be subprocesses 
(simple or composite), which implies that the sequence type can only be slow, like a 
BOD action pattern. DAML-S should incorporate atomic sequencing like BOD’s trigger 
sequences and specify conditions and mechanisms for premature termination. 

3.6.4 Basic reactive plans 
Often in a dynamic environment, action selection is too nondeterministic for sequences to 
direct it. Nevertheless, focusing on a particular subset of an action repertoire is a more 
efficient and effective way to complete tasks. This is what basic reactive plans are for. A 
BRP provides an organized way to apply a subset of actions until the module achieves a 
goal. DAML-S does not currently support the expression of a BRP directly, although 
developers can build BRPs from a repeat-while statement and cascading if-then-elses. For 
clarity, though, DAML-S should support BRPs directly as a composition construct. 

3.6.5 Agent-level control 
As we’ve described, the root of a BOD reactive plan hierarchy is a set of goals that a 
module checks every time step. A real-time agent requires such a mechanism for 
monitoring its environment (including itself) to determine whether one of its high-level 
goals has become urgent and should determine its current intentions. BOD’s action 
selection uses an extended version of the BRP for this purpose [Bryson, 2000; Bryson 
and Stein, 2001b].  DAML-S should also include an agent-level control construct. 
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4 Collaborative Document Systems 
DOD operations are critically dependent on information management.  A substantial part 
of this grant group’s efforts focused on document management ontologies and tools to 
support information management and decision making, ultimately delivering a toolset to 
the DAML community on the daml.org web site. 
 
In this effort, Olin College developed and deployed a set of DAML-enhanced document 
management tools to provide collaborative document development and version tracking 
functionality.  These tools are based on standard COTS systems (Concurrent Versions 
System (CVS) and wiki) modified for DAML compatibility.  In addition to their 
suitability for information management applications, these tools are appropriate for 
software development and software process management applications as similar source 
and life cycle issues arise in that domain. 

4.1 A Queryable Document Versioning Repository 
Suppose that intelligence analysts are producing intelligence reports about Afghanistan.  
There are several types of reports with varying review cycles and timeliness 
requirements.  All the reports are archived using a DAML-based system such as the one 
that we are developing.  Using document-life-cycle enhanced DAML tools such as we 
built, consumers of intelligence could get answers to questions like: 
• What is the most recent report on road traffic in Afghanistan? 
• How often have we revised our estimates on fuel supplies in the Northeast region? 
• How many reports are based on the raw data given in document? 
• Which documents have been entered into the Operational Net Assessment database? 
 
The Olin College CVS-to-DAML servlet returns CVS history information for one of the 
CVS servers.  (See http://unicorn.olin.edu:8080/CVStoRDFservlet/CVStoRDF for a 
demonstration; the output is rather lengthy.)  It uses the CVS ontology developed by 
Mike Dean, online at http://www.daml.org/2001/10/cvslog/cvslog-ont.  The code for the 
servlet is available as a .war file. 
 
Specifically, we instrumented a CVS (document tracking and versioning) system with 
DAML (subsequently OWL) markup.  This allows semantic web access to multiple 
versions of a single document and to information about document lifecycle, authorship, 
revision, etc.  We then used this instrumented versioning system to back up a wiki – a 
collaboratively writable web space – with DAML (subsequently OWL) markup.  This 
allows straight web access to shared document manipulation space with semantic web 
annotation of the document’s life history.   
 
Initially, we deployed our semantic web instrumented wiki in a curricular activity at Olin, 
engaging Olin students and faculty in testing its general as well as specifically 
pedagogic/educational applications.  This launched a more widespread use of wiki 
technology in the organizational lifecycle and management of Olin College. 
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Once this early testing was completed, we created a public version of our toolset on the 
Olin DAML project web site, http://www.daml.olin.edu.  Additional testing, especially 
by W3C and DAML collaborators, led to further revisions and refinements of our toolset.   
 
Finally, our toolset was deployed on the public DAML project site, http://daml.org, in 
conjunction with the DAML deliverables at that site.  Demos were also given informally 
to members of the DAML community and formally at the fall 2003 DAML PI meeting. 
 
The final tool uses a refined ontology for CVS data (based on work started by Mike Dean 
of the BBN DAML Integrator team) and a java servlet that uses a Jena query to produce 
DAML output from the CVS store.  The back end performance of this toolset was 
significantly enhanced as further analysis allowed for optimization of query times of the 
CVS-to-RDF servlet.8  Additional collaboration with the DAML integrator and 
repackaging of the servlet resulted in deployment on the DAML web site and resulting 
integration with the larger DAML corpus. 

4.2 Documents and People:  Expanding the Ontology  
The CVS DAML servlet makes information about documents and their histories available 
on the semantic web.  In addition, Olin College built and integrated tools to publish and 
manipulate information about individuals.  This allows reasoning about the people 
involved in creating and maintaining these documents.   
 
Olin’s people tools make use of the FOAF (Friend of a Friend) ontology as a basis for 
people descriptions.  To populate this dataset, we developed conversion tools between 
FOAF and Vcard representations of data about people as well as a tool to scrape 
Lightweight Directory Access Protocol (LDAP) data from Olin's Microsoft Exchange 
server and convert it to DAML format. 
 
On the basis of this person-representation infrastructure, we implemented a Semantic 
Directory Service.  This directory is currently deployed in experimental mode at Olin 
College.  The directory is the basis for further applications the first of which is a student-
run DVD lending library. 
 
In order to link the CVS data to information about people, we tested two RDF query 
systems for linking CVS and FOAF data: The Inkling System for University of Bristol, 
and the Jena system from HP labs. After discovering that Inkling was broken and that 
Jena would not handle multiple URIs as input, we modified Jena's query front-end to 

                                                 
8 Naive Jena queries against the full CVS database (270K) had been taking about 20 
minutes. However, by adding some Java code to use regular expressions to filter out 
redundant CVS transactions from our Wiki , the times dropped to almost 6 minutes. 
Almost all of this time is 'data load time' in Jena. We investigated, but had not identified 
prior to abrupt funding termination, suitable alternatives to see whether this time can be 
dramatically reduced.  These included either replacing Jena with a different intermediate 
system or changing the way in which the CVS repository data is converted into DAML. 
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support multiple URI data sources.  The resulting program is able to handle simple 
compound queries of the CVS and FOAF data.  

4.3 Work Abruptly Terminated 
Based on the new directions given at the fall 2003 PI meeting, we presented two 
alternative plans of action.  The first involved work on the ease-of-adoption of existing 
DAML (OWL) tools; the second involved integration of our CVS-to-OWL tool into an 
open source distribution such as CVSWeb.  We did preliminary work in preparing for 
both of these tasks, but were not able to fully engage with either as funding was abruptly 
terminated due to program cuts. 
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5 Semantic Web Infrastructure Assessment 
Olin College undertook an effort to involve Olin students in DAML projects and, through 
this, to understand the ease of adoption of these tools by non-expert users.  The results of 
these experiments were informative both about the potential of the underlying 
infrastructure – several interesting tools were built – and its tremendous immaturity – 
each project ran into roadblocks where documentation was inadequate, where tools could 
not be properly connected, or where infrastructure simply could not deliver the 
functionality needed. 
 
Over the lifetime of this contract, but especially intensely in the summer of 2003, we 
evaluated existing DAML (OWL) tools and selected and deployed an infrastructure set 
on top of which we built several DAML (OWL) applications.  These include an 
institutional directory and a media database that are interlinked through DAML (OWL) to 
provide heterogeneous access to these datasets.  We also brought up a DAML (OWL) 
community calendar.  Much of this development work was done by summer students; 
their learning curve provided insight into what is needed to make DAML/OWL more 
accessible to knowledgeable web programmers with minimal KR backgrounds.  We 
presented the results of these experiments at the fall 2003 PI meeting. 
 
Our demonstration at the PI meeting included the institutional directory and media 
database as well as our CVS-to-DAML toolset.  In addition, this demonstration and other 
input at the PI meeting focused on an assessment of the (im)maturity of the existing 
DAML tools.  This may have been a factor in the PM’s decision at that meeting to focus 
the final year of the program on the refinement and deployability of basic infrastructure 
tools rather than the continued exploration of cutting edge innovation that would not be 
as immediately usable by the broader adopting community. 
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6 Web Semantics 
The semantic web requires sound foundations; this is something that the KR community 
has long understood.  But DAML must also be pragmatic and effective; this is something 
that is integral to the success of the World Wide Web, software development generally, 
and the DOD above all.   
 
Olin College brought to the DAML project an unusual background in knowledge 
representation, software development, and web/information management.  This enabled 
the PI to serve as a bridge between the several communities on which DAML 
development efforts build.  Her role as co-PI of the MIT/W3C DAML grant 
acknowledges this, although primary funding for Olin College’s work came through this 
separate AFRL/IF Rome grant.9   
 
As an expert in logic and knowledge representation, Dr. Stein contributed to web 
semantics development activities through collaborative investigation of new technologies 
and their theoretical underpinnings. Much of the Olin College group’s foundational work 
was performed through the WebOnt working group, DAML-JC, and our ongoing 
collaboration with W3C; additional opportunities to engage with European Semantic 
Web experts spawned initiatives in collaborative semantics.  
 
Foundational projects undertaken by Olin College include: general semantics for a web 
ontology language, socially grounded semantics, and syntax-aware semantics:  

6.1 General Semantics for a Web Ontology Language 
In order for semantic web efforts to succeed, they must be based on a well-founded 
semantics.  This aspect of the project combines the long history of formal semantics — 
and more recent intense efforts in this area within the AI research community — with the 
complications of a distributed environment like the world wide web.  Olin College has 
contributed to semantic work on DAML-ONT (the original DAML Ontology Language) 
and its successors DAML+OIL and OWL as well as an agent-based approach to DAML-
S (the DAML Services Infrastructure).  Olin College worked closely in recent years with 
the leadership of the World Wide Web Consortium and other members of the DAML 
project to bridge the gap between these the pragmatic and the philosophically clean.  

6.1.1 Sources and Inspirations 
The DAML ontology language takes its motivation from many places, most notably the 
evolving web languages—in particular RDF [Lassila,  98; Lassila and Swick, 1999] (with 
the embedded XML) and RDFS [Brickley and Guha, 2000].  It is important to be 
backwards compatible with existing web standard for interoperability with the growing 
user base of content, tools for these languages, and users who are comfortable with the 
languages.  The semantics developed for DAML-ONT (and subsequently for 
DAML+OIL and OWL) builds on the work of RDF/S, capturing semantic relations in 
                                                 
9 The PI continued to receive small funding through a subcontract to the MIT DAML 
contract. 
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machine-readable form through more expressive term descriptions along with precise 
semantics.  This is important for many reasons; arguably the most salient is to facilitate 
intercommunication between agents.    While compatibility with web languages was 
paramount, we also recognized that markup representational needs went beyond what 
was conveniently expressible in RDF/S.  Thus, an extended language and semantics were 
developed.  
 
The language and semantics of DAML-ONT (and DAML+OIL, OWL) were also 
influenced by frame-based systems, including knowledge representation languages such 
as Ontolingua [Farquhar et al., 1997] or KEE.  Frame systems have enjoyed acceptance 
and perceived ease of use by broad populations and have been embraced relatively 
widespread use [Fikes and Kehler 1985; Karp 1992; Chaudhri et al. 1998].  The goal of 
our language is to be accessible to the masses and thus it was important to use paradigms 
that are easy to explain and use.   
 
Finally, DAML-ONT takes motivation from the field of description logics 
(www.dl.kr.org), which provide a formal foundation for frame-based systems. Some 
early description-logic based systems include KL-ONE [Brachman-Schmolze, 1985], 
CLASSIC [Borgida et. al, 1989], and LOOM [MacGregor, 1991], and a more recent 
example of a description logic-based system is OIL [Fensel et-al, 2000; Bechhofer et al., 
2000].  Description logics emphasize clear, unambiguous languages supported by 
complete denotational semantics and tractable reasoning algorithms. Description logics 
have been heavily analyzed in order to understand how constructors interact and combine 
to impact tractable reasoning.  See for example, [Donini et al., 1991A and 1991B] for 
early evaluations.  Also, reasoning algorithms have been studied producing knowledge 
about efficient reasoning algorithms (See [Horrocks and Patel-Schneider, 1999] and 
[Horrocks et al., 1999] for example). DAML-ONT draws on the general field of research 
in description logics and, in particular, on the latest description logic:  OIL.  OIL was 
designed to be an expressive description logic that is integrated with modern web 
technology.   
 
The resulting DAML ontology language is a combination of these three building blocks 
along with influence from KIF—the Knowledge Interchange Format—a first order logic-
based proposed ANSI standard, SHOE—Simple HTML Ontology Language [Heflin and 
Hendler, 2000], and OKBC—Open Knowledge Base Connectivity—a standard 
applications programming interface for knowledge systems.   
 

6.1.2 A DAML Semantics 
In order to fully specify a knowledge representation language, one needs to describe both 
the syntax and the semantics of the language.  The syntax description specifies what 
strings of characters are legal statements in the language, and the semantic description 
specifies the intended meaning of each legal statement in the language.  The semantics of 
a representation language can be formally specified in multiple ways.  We have chosen 
here to use the method of specifying a translation of the DAML-ONT language into 
another representation language that has a formally specified semantics.  In particular, we 
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have specified a translation of DAML-ONT into first-order predicate calculus, which has 
a well-accepted model theoretic semantics.  We specify how to translate a DAML-ONT 
ontology into a logical theory expressed in first-order predicate calculus that is claimed to 
be logically equivalent to the intended meaning of that DAML-ONT ontology.  
 
There is an additional benefit to this approach.  By translating a DAML-ONT ontology 
into a logically equivalent first-order predicate calculus theory, we produce a 
representation of the ontology from which inferences can automatically be made using 
traditional automatic theorem provers and problem solvers.  For example, the DAML-
ONT axioms enable a reasoner to infer from the two statements “Class Male and class 
Female are disjoint” and “John is type Male” that the statement “John is type Female” is 
false.  
 
The translation of DAML-ONT to first-order predicate calculus is done by a simple rule 
for translating an RDF statement into a first-order relational sentence, and by including in 
the translation a pre-specified set of first-order predicate calculus axioms that restrict the 
allowable interpretations of the properties and classes that are included in DAML-ONT.    
This creates a set of first-order sentences that include the specific terms in the ontology 
along with the pre-specified set of axioms restricting the interpretations.  The pre-
specified set of axioms and the rules for generating the translation of RDF statements into 
first order sentences are the focus of this presentation since this is the portion that can be 
leveraged across all DAML-ONT (and RDF/S) ontologies.  Since DAML-ONT is simply 
a vocabulary of properties and classes added to RDF and RDF Schema, and RDF Schema 
is simply a vocabulary of properties and classes added to RDF, all statements in DAML-
ONT are RDF statements and a rule for translating RDF statements is sufficient for 
translating DAML-ONT statements as well.  
 
We now describe the mapping of DAML-ONT into first-order predicate calculus. A 
logical theory that is logically equivalent to a set of DAML-ONT descriptions is 
produced as follows:  
 
•         Translate each RDF statement with property P, subject S, and object O into a first-
order predicate calculus sentence of the form “ (PropertyValue P S O) ”.  
 
•         Add to this translation the axioms that constrain the allowable interpretations of the 
properties and classes that are included in RDF, RDF Schema, and DAML-ONT.  
 
Note that it is not necessary to specify a translation for every construct in RDF since any 
set of RDF descriptions can be translated into an equivalent set of RDF statements (as 
described in the RDF and RDF Schema specification documents).  Thus, the one 
translation rule above suffices to translate all of RDF and therefore all of DAML-ONT as 
well.  
 
A notable characteristic of this axiomatization is that it is designed to minimize the 
constraints on the legal interpretations of the DAML-ONT properties and classes in the 
resulting logical theory.  In particular, the axioms do not require classes to be sets or 
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unary relations, nor do they require properties to be sets or binary relations.  Such 
constraints could be added to the resulting logical theory if desired, but they are not 
needed to express the intended meaning of the DAML-ONT descriptions being 
translated. 

6.1.3 Additional Traditional Semantics for DAML languages 
The semantics described here takes an axiomatic approach to providing meaning for 
semantic web languages.  An alternate approach, that of model theory, is used by Hayes 
(2004) to produce a semantics for RDF and by Patel-Schneider et al. for DAML-ONT, 
DAML+OIL, and ultimately OWL (2004).  Olin College participated in the refinement of 
these efforts through the DAML community, the Joint Committee, and the Web Ontology 
Working Group processes.  These include teleconferences and face-to-face meetings as 
well as online discussions.  The results of these processes are available as W3C technical 
reports; in particular, the documentation of the formal semantics developed for OWL 
may be found at http://www.w3.org/TR/owl-semantics/ 

6.2 Web Pragmatics 
In some ways, a traditional truth-theoretic semantics is just a bad fit for certain aspects of 
human activity.  The web – a dynamic interactive community of practice – is increasingly 
becoming such a place.  Really, this is an issue of (traditional, formal) semantics being 
applicable to well-formulated concepts and specifically to their truth.  Formal semantics 
are often not really about meaning, they are really about truth.  And it is admissible – 
even conventional – to say that something is ill formed and therefore without (or outside 
of) semantics.  In natural language, something can be partially intelligible or ill-formed 
but still comprehensible.  As in natural language, the semantic web will ultimately need 
to honor these shades of grey. 
 
A classical approach to "the meaning of  OWL ontologies", would generally intend 
something like denotational  semantics.  (This isn’t intended to rule out an axiomatic 
encoding, but simply to call out "what the term refers to").  Web utterances also have (or, 
one might argue, only have) a different kind of meaning.  The "social meaning..." of a 
web utterance includes something one might call "effective semantics", i.e.,  "what work 
the term can do in the world".   
 
So, for example, an ontology may formally mean one thing but the courts may (in 
practice, perhaps even incorrectly) use it as the basis for making a distinct legal ruling.  
The legal ruling may be at odds with the "meaning" in the classical sense of the ontology, 
but it then becomes part of the "effective  semantics" or "social meaning" of the ontology. 
 
The semantic web is stuck with the reality of living in a world with paradox, 
contradiction, and other logical difficulties, not to mention ambiguity of meaning, 
socially constructed usage, partial knowledge, temporal embeddedness, retraction, and 
outright lies.  The approach is to design a system that accommodates to the actual 
activities of real users, but which – as a consequence – may be more concerned with such 
things as negotiating misunderstandings than expressing things "correctly".  
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In fact, the formal specification is giving meaning to the notion of  "correct usage".  But 
"correct" is sometimes different from "effective" in the philosophical and pragmatic 
senses.  This approach to semantics recognizes the pragmatic reality that, in an 
infrastructure as diverse, distributed, and decentralized as the web, there will be misuse, 
abuse, or what Donald Norman and others would just call real use.   
 
All of the issues that arise in natural language arise are more general to human 
interaction.  We will have them on the web, whether we like it or not.  In a classical 
approach to formal languages, we might call this misuse or abuse.  On the web, we have 
no choice but to recognize it as real use.  Any genuine web semantics will need to take 
this into account.  For example, there will be contradiction on the web, and it had better 
not make OWL collapse.  There will also be "shades of meaning" and other things that 
traditional semantics are lousy at capturing.  (Tell me about the semantics of beauty....) 
 
These issues are not just restricted to natural languages, either.  Programming languages 
have formal specifications, but implementations still vary and people code with different 
interpretations of the programming language.  (That's why you get dialects or "write 
once, debug everywhere" or....)  To think that we will be able to precisely specify all 
meanings on the web is to fundamentally misunderstand the web as well as semantics. 
 
Ultimately, web semantics will need to deal with things like 404 and changing web pages 
and digital signatures.  Assertions will be retracted over time; pages will disappear.  
These are fundamental issues of "doing logic on the web". 

6.3 Communally Derived Semantics 
Communities develop usages (e.g., of terms) that constrain meanings.  Moving from one 
community to another often means changing the way that a term is used.  A traditional 
model-theoretic or axiomatic semantics cannot account for these communally derived 
semantics or for the way meaning shifts as one moves across communities, toolsets, or 
interrelated ontologies.  The underlying theoretical infrastructure must be extended to 
account for these phenomena if we are to have true semantic interoperability. 
 
The semantic web must allow for semantic interoperability without complete ontology 
agreement.  This strategy rests on the idea of shared grounding, finding specific points of 
agreement and building outward from those to allow just enough common semantics.  
This model flies in the face of traditional model-theoretic semantics but has been of great 
utility in other domains, including natural language translation (Knight), human-robot 
interaction (prior work of the PI with Torrance), and web learning (Etzioni).   
 
This approach argues that the effective semantics of a document must be treated 
separately from its formal semantics as described in the previous section.  The social 
(AKA effective) meaning of OWL is determined by its external context and the ways in 
which it hooks into that context.  The ability to define a formal semantics (as described 
above) should not be affected.   
 
Socially grounded semantics allow variations between communities of practice.  Truths 
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that are taken for granted by one group may be falsehoods (or merely ambiguous) to 
another.  What is essential is that each group can reason jointly and that joining a group – 
or merging groups – can be accomplished incrementally through shared grounding. 
 
For example, one community may accept that there are infinitely many integers and that 
Paris is the capital of France, while to a C programmer int is restricted to 32 bits and, in 
certain parts of Texas, Paris is the town next door.  One response to this, of course, is that 
what a C programmer means by an int is not the same thing as the integer (and similarly 
pjh:Paris is different from at least some Texan's notions), but ultimately that is not an 
entirely satisfactory response. 
 
There is NO definitive objective interpretation of what, e.g., Paris means, and although 
I'm confident that you can constrain pjh:Paris in ways that would make it clear that 
texas:Paris is a different thing, the same issues with subtler shading will arise over and 
over again.   
 
The only way to truly understand web ontologies is in terms of communities of 
interpretation:  social context.  The trick is going to be the ability to say something about 
being in the same social context and therefore using Paris to mean France, not Texas.  
(Said differently:  If the trick involves its being TRUE that Paris can only mean France, 
the trick is not going to work on the web.) 
 
In general, we are not going to be able to know the context of a particular assertion, but 
we will be able to (and need to) say:  For the purposes of the following, assume that you 
are in the same context as the author of this information.  Your assumption may be wrong 
-- people co-opt terminology and misuse it all the time -- but your reasoning will need to 
be based on this presumed sharing of context.   For the most part, that presumed sharing 
of context will have to be indicated by human beings or webs of trust. 
 
Classical approaches to logic presume there is a universe of discourse.  Unfortunately, on 
the web there are many localized universes that partially overlap and slip and slide 
against one another.  That is, in the world of the web one cannot decontextualize 
everything so that there can be a single universe behind it all.  Anyone who thinks that 
this is possible is missing the central idea that mutually inconsistent pockets of reasoning 
happen all the time in the world (not to mention within a single human brain, naive 
theories of belief notwithstanding). 
 

6.4 Syntactically Constrained Semantics   
Certain web mechanisms, such as Digital Signature, constrain the meaning of a statement 
by tying it to a particular syntactic expression. As the semantic web increasingly relies on 
the meaning of these syntax-constraining expressions, traditional model-theoretic and 
axiomatic semantics will need to be similarly extended. 
 
One role of syntax in semantics is the need for systems to make signed (as in digital 
signature) assertions.  The signed assertion “A and B” is different from the signed 
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assertion “B and A”.  For example, the digital signature of “peanut butter and jelly” is 
different from the digital signature of “jelly and peanut butter”.  A semantics for the web 
will need to take this into account.  
 
Syntax – and a syntactically dependent semantics – is also where the asserter lurks.  
OWL statements aren't (merely) true or false, they're asserted (by an agent or by the 
resolvent of a url or by a document) or not. 
 
Default reasoning has always been heavily dependent on syntax and, on the web, this will 
only be more so.  Any system that wants to draw a default conclusion should be allowed 
to do so but must endorse its conclusion.  This means that another reasoner can take that 
fact – e.g., that Frank says so – as reason enough to believe it.  Frank doesn't have to 
explicitly justify it to me, but may, e.g., sign the assertion or a statement of belief so that I 
can verify that endorsement.  And it may be that Frank wants to change his mind, later, or 
otherwise retract a default, all of which can be done straightforwardly by modifying (time 
limiting, withdrawing) his signature of endorsement. 
 
This relieves us to some extent of the obligation to have a universally agreed upon means 
of default reasoning.  I can, of course, sign my own default assertions, but if I make 
defeasible assertions, I cannot expect to be able to universally justify them beyond my 
signature.  (I may have darn good reasons for believing these defaults, but if they're 
defaults, they're not expressible directly in OWL and I can't produce an OWL 
justification.)  Others may choose to believe what I say simply because I say it, or they 
may reject it, or they may even ask me for some (non-standard, non-universal) 
explanation of my default conclusion.  They can’t expect me to produce a formal proof in 
a universally agreed upon default logic, though. 
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